首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
环保管理   29篇
综合类   4篇
基础理论   12篇
污染及防治   6篇
评价与监测   2篇
社会与环境   2篇
灾害及防治   1篇
  2018年   1篇
  2017年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1970年   1篇
排序方式: 共有56条查询结果,搜索用时 859 毫秒
31.
Atmospheric deposition of nutrients within agricultural watersheds has received scant attention and is poorly understood compared to nutrient transport in surface and subsurface water flow pathways. Thus, we determined the deposition of phosphorus (P), nitrogen (N), and sediment in a mixed land use watershed in south-central Pennsylvania (39.5 ha; 50% corn–wheat–soybean rotation, 20% pasture, and 30% woodland), in comparison with stream loads at several locations along its reach between 2004 and 2006. There was a significant difference in deposition rates among land uses (P < 0.05) with more P and N deposited on cropland (1.93 kg P and 10.71 kg N ha−1 yr−1) than pasture (1.10 kg P and 8.06 kg N ha−1 yr−1) and woodland (0.36 and 2.33 kg N ha−1 yr−1). Although not significant, sediment showed the same trends among land uses. A significant relationship was found between P in deposition and P in soil <10-m away from the samplers suggesting much of the deposited sample was derived from local soil. Samplers adjacent to the stream channel showed deposition rates (1.64 kg P and 8.83 kg N ha−1 yr−1) similar to those on cropland. However, accounting for the surface area of the stream, direct deposition of P, N, and sediment probably accounted for <3% of P and <1% of N and sediment load in stream flow from the watershed (1.41 kg P, 27.09 kg N, and 1343 kg sediment ha−1 yr−1 at the outlet). This suggests that strategies to mitigate nutrient and sediment loss in this mixed-land use watershed should focus on runoff pathways.  相似文献   
32.
Incidental phosphorus loss is a concern for surface water quality. Here we showed that the risk of incidental P loss can be minimised, even from highly soluble superphosphate fertiliser, by timing application when overland flow is unlikely. Moreover, we demonstrated that the risk of incidental P loss can be estimated from water solubility, decreasing the need for expensive field trials. As such, we suggest that slowly available fertilisers such as reactive phosphate rock or serpentine super could be used in situations where incidental losses need to be decreased and conditions are suitable e.g., soil pH less than 6 and rainfall greater than 800 mm for reactive phosphate rock.This revised version was published online March 2005 with corrections to the authors name.  相似文献   
33.
Large dams degrade the integrity of a wide variety of ecosystems, yet direct downstream effects of dams have received the most attention from ecosystem managers and researchers. We investigated indirect upstream effects of dams resulting from decimation of migratory freshwater shrimp and fish populations in Puerto Rico, USA, in both high- and low-gradient streams. In high-gradient streams above large dams, native shrimps and fishes were extremely rare, whereas similar sites without large dams had high abundances of native consumers. Losses of native fauna above dams dramatically altered their basal food resources and assemblages of invertebrate competitors and prey. Compared to pools in high-gradient streams with no large dams, pool epilithon above dams had nine times more algal biomass, 20 times more fine benthic organic matter (FBOM), 65 times more fine benthic inorganic matter (FBIM), 28 times more carbon, 19 times more nitrogen, and four times more non-decapod invertebrate biomass. High-gradient riffles upstream from large dams had five times more FBIM than did undammed riffles but showed no difference in algal abundance, FBOM, or non-decapod invertebrate biomass. For epilithon of low-gradient streams, differences in basal resources between pools above large dams vs. without large dams were considerably smaller in magnitude than those observed for pools in high-gradient sites. These results match previous stream experiments in which the strength of native shrimp and fish effects increased with stream gradient. Our results demonstrate that dams can indirectly affect upstream free-flowing reaches by eliminating strong top-down effects of consumers. Migratory omnivorous shrimps and fishes occur throughout the tropics, and the consequences of their declines upstream from many tropical dams are likely to be similar to those in Puerto Rico. Thus, ecological effects of migratory fauna loss upstream from dams encompass a wider variety of species interactions and biomes than the bottom-up effects (i.e., elimination of salmonid nutrient subsidies) recognized for northern temperate systems.  相似文献   
34.
This study investigated the forms of soil P released to solution, accuracy of their determination, and influence of colloids on P sorption/desorption dynamics. A Hagerstown silt loam, amended with dairy and poultry manure or superphosphate at five rates (0, 25, 50, 100, and 200 kg P ha(-1)), was extracted at two soil:solution ratios (1:5 and 1:100) and filtered at three pore sizes (0.8, 0.45, and 0.22 microm). Results showed that relative to the proportion of dissolved organic P (DOP, determined as the difference between total dissolved P [TDP] and P detected by ion chromatography), DRP increased with amendment rate. Relative to Mehlich-3 extractable P, DRP exhibited a power relationship with a much greater potential for soil P release at concentrations in excess of ca. 50 mg Mehlich-3 P kg(-1). Concentrations of DRP, determined by the acid molybdate method, were on average 12.5% greater than P detected by ion chromatography indicating P was solubilised during colorimetric determination. A linear relationship was found between total Al and DRP, which could indicate acid mediated hydrolysis of A1-humic-P substances, although acid mediated desorption of P from colloids cannot be discounted. No difference in solubilised P was found between solutions filtered at 0.22 and 0.45 microm, but was found between 0.8 microm and smaller filter sizes. Organic P extracted from manured soils was more recalcitrant than that extracted from soils amended with superphosphate, the later attributed to its accumulation in more labile pools. The sorption/desorption of P by colloids in solution were greatly affected by the rate of amendment and the soil:solution extraction ratio. More P was sorbed by superphosphate solutions compared to dairy manure amended soil solutions and was attributed to the saturation of colloidal P sorption sites by organic matter. In order to minimise the effects of colloids on P dynamics and the potential for hydrolysis in solution, filtration to at least 0.45 microm is required. However, soils with a lesser aggregate stability may require additional filtration.  相似文献   
35.
Nutrients exported from grazing systems contribute to eutrophication of surface waters. In this study the contributions of soil, pasture-plants, and dung to P exports in overland flow were compared using simulated rainfall. The treatments were (i) grazed pasture-plants (isolated from soil by application of petrolatum to the soil surface), (ii) grazed pasture-plants and supporting soil, (iii) grazed pasture-plants and soil and treading, and (iv) grazed pasture-plants and soil and treading and dung. In general, dissolved reactive P (DRP) accounted for the majority of the P exported and P losses decreased in the order: treading and dung treatment>treading>pasture-plants and soil>pasture-plants. Very little dissolved organic P was lost in overland flow and the effects of treading diminished with time. Over a normal grazing cycle (30 d), the portion of P lost from pasture-plants was approximately half that lost from pasture-plants and soil, one-third that lost from treaded pasture-plants and soil, and one-quarter that lost from treaded pasture-plants, soil, and dung. The DRP in the pasture-plants treatment was approximately half that in the pasture-plants and soil treatment and suggests that a significant portion of the P exported from these systems is derived directly from pasture-plants. Due to higher proportions of particulate P (PP) in the treaded and dung treatments, DRP accounted for less of total P than in the pasture-plants and pasture-plants and soil treatments. Lower infiltration capacities probably caused by mechanical disaggregation at the soil surface are consistent with the higher proportions of PP in the treading treatments. These results were used to estimate P exports from a field trial site in Southland, New Zealand. The results suggested that P export attributable to fertilizer, dung, pasture-plants, and soil components were approximately 10, 30, 20, and 40%, respectively. These results suggest that since 90% of the P exports are derived from the soil-plant system and dung returns, managements to lessen P exports should continue to focus on maintaining soil P within the optimal range for pasture-plant production and maintaining soil surface properties that maximize infiltration and minimize overland flow.  相似文献   
36.
There is interest in quantifying phosphorus (P) loss from intensively grazed dairy landscapes to identify key pathways and target remediation methods. The Bog Burn drains a dairying catchment in Southland, New Zealand, and has been monitored at fortnightly intervals over a 12-mo period at four sites for suspended sediment (SS), dissolved reactive phosphorus (DRP), and total phosphorus (TP). Time-integrated samplers, deployed at 0.6 median water depth at each site (calculated from previous year's flow data), collected sediment samples, which were analyzed for SS, bioavailable phosphorus (BAP), and TP. Mean concentrations of DRP and TP in stream flow and BAP and TP in sediment were generally highest in summer or autumn (0.043 mg DRP L(-1), 0.160 mg TP L(-1), 173 mg BAP kg(-1), 2228 mg TP kg(-1)) and lowest in winter or spring (0.012 mg DRP L(-1), 0.034 mg TP L(-1), 6 mg BAP kg(-1), 711 mg TP kg(-1)), while loads were highest in winter. Analysis of (137)Cs concentrations in trapped sediment, topsoil, subsoil, and stream bed and bank sediment indicated that trapped sediment was derived from topsoil and entered the stream either through tile drainage or, to a lesser extent, overland flow. Because concentrations of DRP and TP in stream flow are in excess of recommended limits for good water quality (>0.01 mg DRP L(-1), 0.033 mg TP L(-1)), management should focus on the topsoil and specifically on decreasing P loss via tile drainage. This is best achieved by decreasing soil Olsen P concentrations, especially because, on average, Olsen P concentrations in the catchment were above the agronomic optimum.  相似文献   
37.
Knowledge of phosphorus (P) fractions in dung of animals (dairy cattle, deer, sheep) grazing pasture is important for soil fertility and the potential for P transport in runoff and subsequent surface water quality deterioration. We used sequential fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy to determine P forms in fresh and air-dried (to simulate field conditions during grazing) dung. Sheep dung was richest in P (8 g kg(-1)), and cattle dung poorest (5.5 g kg(-1)). Data for sequential fractionation indicated that most P was extractable by water (15-36%) and bicarbonate (36-45%) in fresh dung, and shifted toward recalcitrant, HCl (12-28%), and residual P forms (15-31%) with drying. Organic P concentration in dung was poor (maximum of 15% of total P), probably due to the poor concentration of phytate in pasture. The 31P NMR spectra of NaOH-EDTA extracts supported this by detecting a low concentration of monoesters (9-19% of total P in extracts), of which phytate is a major component. The 31P NMR data also showed that changes in organic P concentration with drying could be due to the degradation of diesters. Data indicate the decreasing bioavailability of dairy cattle, deer, and sheep dung with drying and the need to consider this effect with respect to P returns for soil fertility and the potential for runoff.  相似文献   
38.
Phytochelatins are enzymatically synthesized peptides involved in metal detoxification and have been measured in plants grown at very high Cd concentrations, but few studies have examined the response of plants at lower environmentally relevant Cd concentrations. Using an ethylenediaminetetraacetic acid (EDTA)-buffered nutrient medium, we have varied Cd exposure and measured phytochelatin and glutathione concentrations in romaine lettuce (Lactuca sativa L. var. longifolia Lam. var. Parris Island) grown in a flow-through hydroponic (FTH) system. Very low free ionic Cd (10(-9.6) M) increased average phytochelatin concentrations above those of controls, and increasing Cd resulted in increased phytochelatin production, though increases were tissue dependent. Glutathione concentrations also increased with increasing Cd. In other standard hydroponic experiments, the media were manipulated to vary total Cd concentration while the ionic Cd was fixed. We found that the total amount of Cd (primarily EDTA bound) in the medium altered thiol production in roots, whereas thiols in leaves remained constant. The Cd uptake into roots and translocation to old leaves was also influenced by the total concentration in the medium. Cadmium in all tissues was lower and in some tissues thiol concentrations were higher than in FTH-grown plants grown in identical medium, suggesting that nutrient delivery technique is also an important variable. Though phytochelatin and glutathione production can be sensitive to changes in bioavailable Cd, thiol concentrations will not necessarily reflect the Cd content of the plant tissues.  相似文献   
39.
The relation between sediment and water quality involves the individual relations between sediment and the physical, chemical, and biological characteristics of water as these characteristics determine the suitability of water for an intended use. Both the physical and chemical properties of fine-grained sediments must be considered in evaluating these relations, whereas only the physical properties of coarse-grained sediments are significant. Most of the literature concerning this subject has considered sediment only as a physical entity. In amount, it is the prime pollutant and is one of the major considerations in evaluating the suitability of water for an intended use. Losses in the United States from sediment and associated flood water damages are measured in billions of dollars annually. Sediments also indirectly affect water suitability through their (physical) influences on biological activity. Fine-grained sediments, that is, clay minerals and amorphous and organic materials, have chemically active surfaces. These sediments may either sorb ions from solution or release ions to solution depending upon the chemical environment. Unfortunately, not enough is known about the ternary system–sediment-water-dissolved chemical load–to adequately define its influence on either the biological characteristics of water or the suitability of water for various long-term uses. This paper attempts to define the problems concerning the role of sediment in this ternary system.  相似文献   
40.
A field survey of hematopoietic neoplasia (Hn) in the soft shell clamMya arenaria (L.) was undertaken using an immunoperoxidase diagnostic technique. Monthly collections ofM. arenaria were made at two sites: Little Buttermilk Bay and New Bedford Harbor, both in Buzzards Bay, Massachusetts, USA, from May 1986 to October 1987. Clams were diagnosed for leukemia and analyzed for soft-tissue dry weight, condition index, and carbon and nitrogen content of the soft tissue. Prevalence of leukemia inM. arenaria exhibited a seasonal fluctuation with a maximum prevalence in fall (September to October) and a minimum prevalence in early summer (March to July). A second maximum peak in late winter (January to March) was observed at one site. Leukemia primarily affected clams that were 3 to 4 yr post-settlement. Lower prevalence levels were observed in both younger and older clams. LeukemicM. arenaria with advanced stages of the disease, were in poorer physiological condition based on dry weight of the soft tissue, condition index, and carbon content of the tissue. Nitrogen metabolism appeared to be unimpaired. Significant differences were observed between the two sites with respect to prevalence of Hn and the physiological condition of clams. Differences in disease prevalence between the two sites may be the result of unknown environmental factors that facilitate initiation of the disease or, that compromise the defense mechanisms of the clams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号